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A constant-density approach, which corrects intermediate density errors by adjusting the
half-time-step velocity with exact projection, is proposed for the multi-phase SPH method
developed in our previous work [X.Y. Hu, N.A. Adams, An incompressible multi-phase SPH
method, J. Comput. Phys. 227 (2007) 264–278]. As no prescribed reference pressure is
required, the present approach introduces smaller numerical viscosity and allows to sim-
ulate flows with unprecedentedly high density ratios by the projection SPH method.
Numerical examples for Taylor–Green flow, capillary waves and for Rayleigh–Taylor insta-
bility are presented and compared to theoretical solutions or references from the literature.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In our previous work [7], an incompressible multi-phase SPH method is proposed for flows with sharp density and vis-
cosity interfaces. To handle the problem of accumulating density errors and particle clustering, which can occur with the
projection SPH method [2,12,11], a constant-density constraint has been proposed by correcting the particle position with
an iterative approach. While numerical examples demonstrate that this approach is more accurate and more efficient than
previous SPH for flow with low density ratios, it faces similar difficulties when the density ratio is high. First, the conver-
gence behavior of the iterative scheme is difficult to estimate a priori due to the non-linear relation between particle position
and particle density. When the density ratio is high, the iteration may fail to converge to the permitted maximum density
error. Second, a prescribed reference pressure, which is superimposed onto the pressure distribution for the constant-density
and the zero-velocity-divergence constraints, is required to avoid the tensile instability [13,3]. Although good accuracy can
be obtained with an optimal reference pressure from numerical experimentation, extra numerical viscosity may be intro-
duced if the reference pressure is over-estimated. In addition, there is a time-step criterion based on the prescribed reference
pressure. Since the reference pressure is proportional to the maximum density, it can lead to extremely small time-step sizes
for problems with high density ratios.

In this paper, the constant-density constraint is imposed by a new technique allowing to simulate flows with high density
ratios of 100 or more, which has not been achieved by previous projection SPH methods. Other than the non-linear iterative
correction of the particle position in Ref. [7], the present method modifies the half-time-step velocity by an one-step correc-
tion based on an exact projection approach. Since only a linear system is involved, the convergence behavior of the iterative
scheme can be estimated a priori. With exact projection, no reference pressure is required to be superimposed for the con-
stant-density constraint step, and the reference pressure for the zero-velocity-divergence constraint can be treated in a sim-
ple way. Therefore, the extra numerical viscosity due to an over-estimated reference pressure in Ref. [7] can be avoided.
Unlike the previous time-step criterion based on the reference pressure in Ref. [7], a criterion based on the predicted density
. All rights reserved.
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error and the accumulated density error during previous steps is formulated. Since it is not directly related to the reference
pressure or the density ratio, the related obstacle of small time-step sizes is alleviated. To evaluate the performance of the
present method, numerical tests are carried out and compared to analytical and previous results.

2. Method

As in Ref. [7], we consider the incompressible, multi-phase and isothermal Navier–Stokes equations in a Lagrangian
frame
dq
dt
¼ 0 or r � v ¼ 0; ð1Þ

dv
dt
¼ g� 1

q
rpþ mr2v þ 1

q
r �P; ð2Þ
where q; p, v and g are fluid density, velocity, pressure and body force, respectively, and m ¼ g=q is the kinematic viscosity. P
is the surface stress given by
P ¼ a
1
jrCj ð

1
d

IjrCj2 �rCrCÞ; ð3Þ
and a is the surface-tension coefficient, d is the spatial dimension and rC is the gradient of a color index C which has a unit
jump across the interface. Note that the two expressions (constant-density and zero-velocity-divergence) in Eq. (1) are for-
mally equivalent for an incompressible flow.

To discretize Eqs. (1) and (2), two forms of the SPH approximation [6] with a kernel function WðrÞ can be given as
rwi � ri

X
j

1
r2

i

þ 1
r2

j

 !
wijrWij ¼ ri

X
j

Aijwij; ð4Þ

rwi � ri

X
j

wi

r2
i

þ
wj

r2
j

 !
rWij; ð5Þ
where Aij ¼ ð 1
r2

i
þ 1

r2
j
ÞrWij, rWij ¼ rWðri � rjÞ, and ri � rj ¼ rij ¼ rijeij, and eij is the normalized vector from particle i to par-

ticle j. wi is the value of a smooth variable wðrÞ for a particle and wij is an inter-particle averaged value. The particle number
density ri ¼

P
jWij approximates the inverse of the particle volume, hence the particle density is given by
qi ¼ miri ð6Þ

where mi is the mass of particle. In practice, ri and mi are initially chosen for every particle based on the fluid density and
particle distribution. Since mi does not change through out the computation in a mass-conservative incompressible SPH for-
mulation, the constant-density condition requires that ri be constant.

2.1. Projection method

Similarly to Ref. [7], a fractional time-step integration approach is used to solve Eqs. (1) and (2). First, a half-time-step
velocity is obtained by
vnþ1=2
i ¼ vn

i þ f � 1
q
rp

� �n

i

Dt
2
; ð7Þ
where f is the sum of body force, viscous force and surface force. Subsequently, the particle position at the new time-step is
calculated by
rnþ1
i ¼ rn

i þ vnþ1=2
i Dt; ð8Þ
and the particle velocity at the new time-step is obtained by
vnþ1
i ¼ vnþ1=2

i þ f � 1
q
rp

� �n

i

Dt
2
: ð9Þ
The two incompressibility conditions in Eq. (1) need to be enforced simultaneously to avoid spurious particle aggregation
[7]. The zero-velocity-divergence condition is satisfied by computing the pressure gradients in Eq. (9) to adjust the particle
velocity so that a divergence-free velocity field is obtained, whereas the constant-density condition is enforced by correcting
the predicted particle position, for details refer to Ref. [7]. In order to cope with the computational issues related to conver-
gence and the reference pressure, we propose in this paper a new approach to enforce the constant-density condition by
computing the pressure gradient in Eq. (7) to correct the half-time-step velocity vnþ1=2

i for a constant ri, hence constant-den-
sity according to Eq. (6). The additional benefit of this approach, as will be shown later, is that large density ratios across the
interface can be achieved.
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2.1.1. Constant-density condition
We split Eq. (7) into an intermediate step and a correction step. An intermediate velocity v�;nþ1=2

i is obtained by
v�;nþ1=2
i ¼ vn

i þ
Dt
2

f iðrn;vnÞ; ð10Þ
and the half-time-step velocity vnþ1=2
i is obtained by
vnþ1=2
i ¼ v�;nþ1=2

i � Dt
2
rp
q

� �n

i

: ð11Þ
Using Eq. (6), the discretization of the general form of the continuity equation dq
dt ¼ �qr � v, with the uncorrected interme-

diate velocity gives
r�;nþ1
i � rn

i ¼ �Dtrn
ir � v�;nþ1=2

i : ð12Þ
Ideally, Eq. (12) implies that the velocity-divergence-free condition gives zero density variation. However, in practice, as
there are already some residual density errors on rn

i before the particle moves for another new time step, we actually expect
the particle density to evolve back to its initial density r0

i . Hence the condition for the half-time-step particle velocity
becomes
r � vnþ1=2
i ¼ �r0

i � rn
i

Dtrn
i

: ð13Þ
Taking the divergence of Eq. (11) and substituting Eq. (13) one obtains an equation for the intermediate pressure
r � rp�

q

� �n

i

¼ Dtr � v�;nþ1=2
i þ r0

i � rn
i

rn
i

: ð14Þ
where p� ¼ 1
2 pDt2. Note that the divergence of the intermediate velocity on the right-hand side gives the density error intro-

duced by Eq. (10), and the second part gives the accumulated density error before the new time-step. To obtain the discrete
form of the velocity-divergence operator, we compute the contribution of the intermediate velocity to the variation of the
particle number density by directly taking the time derivative dri

dt ¼
P

jrWij � vij, where vij ¼ vi � vj. The discrete form is
r�;nþ1
i � rn

i ¼ Dt
X

j

rWij � v�;nþ1=2
ij ; ð15Þ
where v�;nþ1=2
ij ¼ v�;nþ1=2

i � v�;nþ1=2
j . By comparing Eqs. (15) and (12), the discrete divergence of velocity is
r � v�;nþ1=2
i ¼ � 1

ri

X
j

rWij � v�;nþ1=2
ij : ð16Þ
2.1.2. Exact projection
If the gradient and the divergence operators are chosen according to the forms of Eqs. (5) and (16), the Poisson operator in

Eq. (14) for an exact projection can be discretized as
r � rp�

q

� �
i

¼ � 1
ri

X
j

rWij �
1

mi

X
k

rWik
p�i
r2

i

þ p�k
r2
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� �
� 1

mj

X
l

rWjl

p�j
r2

j

þ p�l
r2

l

 !" #
: ð17Þ
Hence Eq. (14) can be written as
X
j

Bijp�j ¼ rn
i � r0

i þ Dt
X

j

rWij � v�;nþ1=2
ij ; ð18Þ
where the matrix Bij has the diagonal components
Bii ¼
1
r2

i

X
j

rWij �
X

k

rWik

mi
þrWij

mj

 !
; ð19Þ
and the off-diagonal components
Bij ¼
1
r2

j

X
k

rWik �
rWij

mi
�rWkj

mk

� �
�rWij �

X
l

rWjl

mj

" #
: ð20Þ
Note that Bij is only approximately symmetric. Therefore, highly-efficient solvers for non-symmetric linear systems, such as
the generalized minimum residual (GMRES (q), q is the number of inner iteration steps without restarting) method, need to
be used. With Eqs. (5), (11) and (8), the new particle position can be obtained by
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rnþ1
i ¼ rn

i þ Dtv�;nþ1=2
i � 1

mi

X
j

rWij
p�i
r2

i

þ
p�j
r2

j

 !
: ð21Þ
2.1.3. Velocity-divergence-free condition
The intermediate velocity at the full-time-step v�;nþ1 is obtained by
v�;nþ1
i ¼ v�;nþ1=2

i þ f i rn;vnð ÞDt
2
: ð22Þ
The velocity at the full-time-step vnþ1 is obtained by
vnþ1
i ¼ v�;nþ1

i � rp0

q

� �n

i

; ð23Þ
where p0 ¼ 1
2 pDt. To enforce the velocity-divergence-free condition at the new time-step, the divergence of Eq. (23) is taken,

and by ri � vnþ1 ¼ 0 one obtains the required pressure distribution from
r � rp0

q

� �n

i

¼ ri � v�;nþ1: ð24Þ
According to Ref. [7], Eq. (24) is discretized as
X
j

Aij

rij

p0ij
qi þ qj

¼ 1
2

X
j

Aij

giv
�;nþ1
i þ gjv

�;nþ1
j

gi þ gj

 !
� eij; ð25Þ
where Aij ¼ Aij � eij; p0ij ¼ p0i � p0j, and gi and gj are viscosities for the two particles. The pressure gradient in Eq. (23) is discret-
ized as
rp0

q

� �
i
¼ 1

mi

X
j

Aij

qip
0
j þ qjp

0
i

qi þ qj
eij: ð26Þ
Note that the zero-velocity-divergence constraint is enforced by an approximate projection because the divergence of the
uncorrected full-time-step velocity field is discretized in a conservative form based on Eq. (4), which is very different from
that of Eq. (18).

2.2. Implementation

The overall procedure of the current projection method can be summarized as follows:

(1) Calculate the intermediate half-time-step velocity by Eq. (10).
(2) Obtain the intermediate pressure for particle density correction by solving Eq. (18).
(3) Update the new time-step particle position by Eq. (21).
(4) Calculate the intermediate full-time-step velocity by Eq. (22).
(5) Obtain the intermediate pressure for full-time-step velocity correction by solving Eq. (25).
(6) Update the new time-step particle velocity by Eq. (23).

In practice, the convergence criterion for Step 2 is chosen such that the mean or maximum predicted density error, esti-
mated by the average residual or maximum residual of Eq. (18), is less than a certain threshold, usually 0.1%. Numerical
experiments suggest that no extra reference pressure is need to be superimposed when updating the new time-step particle
position by Step 3. When updating the new time-step velocity, Step 6, for the zero-velocity-divergence constraint, the ref-
erence pressure is simply set as the magnitude of the minimum negative pressure obtained from the solution of the Poisson
equation, which is different from the prescribed reference pressure in [7].

2.3. Time-step criteria

The same time-step criteria as in [7] for stable time integration, including a CFL condition, a viscous-diffusion condition
and surface-tension condition must be satisfied. In [7] there is a time-step criterion based on the prescribed reference pres-
sure, which is proportional to the maximum density. This time-step criterion can lead to extremely small time-steps for
problems with large density ratios. In this work, this difficulty can be alleviated because, according to the proposed treat-
ment for the reference pressure, the tensile instability is less pronounced and a time-step criterion based on the reference
pressure is not necessary. However, as the conservative discretization of the pressure gradient in an SPH method produces
residual fluctuations proportional to the pressure magnitude, very large pressure values may still cause a stability problem.
From Eq. (14), it can be seen that the difference of the pressure gradient is approximately proportional to the magnitude of
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the right-hand side, which can result in large pressure gradients and eventually lead to large pressure values. Therefore, the
following bounds are enforced
jDtr � v�;nþ1=2
i jmax 6 �1 and

r0
i � rn

i

rn
i

����
����
max

6 �0: ð27Þ
Note that, since Eq. (27) is not directly related to the reference pressure or the density ratio, the related obstacle of small
time-step sizes is alleviated. Typically, one can choose �0 ¼ 0:01 and �1 ¼ 0:1 which need to be satisfied by the iterative
scheme. The relation �1 � �0 is found through numerical experimentation, which indicates that the introduced density error
due to the uncorrected velocity (i.e. the first relation in (27)) is much larger than the accumulated density error (i.e. the sec-
ond relation in (27)). The first relation gives a new global time-step criterion
Dt 6 �1jr � v�;nþ1=2j�1
max: ð28Þ
If the second relation is not satisfied the accumulated density error is large, and a further correction on particle position and
velocity is enforced before a new time-step. This is done by the same projection procedures as above but with zero time-step
size.

3. Numerical examples

The following two-dimensional numerical examples serve to validate the proposed incompressible multi-phase SPH
method. For all cases a quintic spline kernel [10] is used as smoothing function. A constant smoothing length, which is kept
equal to the initial distance between the neighboring particles, is used for all test cases. The discretizations of viscous force
and surface force follow Ref. [6]. As elliptic solver a diagonally preconditioned GMRES (q) method is used. If not mentioned
otherwise, no-slip wall boundary conditions are implemented following the approach of Cummins and Rudman [2].

3.1. Two-dimensional Taylor–Green flow

The two-dimensional viscous Taylor–Green flow is a periodic array of vortices, where the velocity
uðx; y; tÞ ¼ �Uebt cosð2pxÞ sinð2pyÞ
vðx; y; tÞ ¼ Uebt sinð2pxÞ cosð2pyÞ ð29Þ
is an exact solution of the incompressible Navier–Stokes equation. b ¼ � 8p2

Re is the decay rate of velocity field. We consider a
case with Re ¼ 100, which has been used to test different incompressible SPH methods [1,4,7]. The computational set-up is
the same as that of [7]. The computation is performed on a domain 0 < x < 1 and 0 < y < 1 with periodic boundary condi-
tions in both directions. The initial particle velocity is assigned according to Eq. (29) by setting t ¼ 0 and U ¼ 1. Same as in
[7], the initial particle configuration is taken from previously stored particle positions (relaxed configuration). In order to
study the convergence properties the calculation is carried out with 450, 900, 3600 particles, respectively.

Fig. 1 shows the calculated positions of particles and vorticity profiles, respectively, at t ¼ 1 with 3600 particles. It can be
observed that a uniform particle distribution without clustering is produced. The current SPH simulation recovers the the-
oretical solution quite well with somewhat larger errors in regions close to the centers of vortex cells. Fig. 2(a) shows the
calculated decay of the maximum velocity of the flow with different resolutions.

It can be observed that for low resolution results, the predicted Reynolds number is slightly smaller than the theoretical
value. However, the predicted Reynolds number converges to the theoretical value with increasing resolution. Note that,
with only 450 particles, the accuracy of the current simulation is comparable with that of [4] with 3600 particles (see their
Fig. 8), in which only the constant-density constraint is implemented by a non-linear iterative approach. We measure the
overall accuracy by L1 errors
L1 ¼
PN

i¼1 Uex � USPH
��� ���PN

i¼1 Uex�� �� ; ð30Þ
where USPH and Uex are the simulated and theoretical velocities, respectively, N is the number of particles. The L1 errors with
different resolutions are shown in Fig. 2(b), which indicate an super-linear convergence rate.

While in the present method the reference pressure is used only for the zero-velocity-divergence constraint as described
in the last paragraph of Section 2.2, it is prescribed as a constant value in [7]. Although the magnitude of the reference pres-
sure can be determined by considering the force balance in the equation of motion, the optimal value which gives stable and
accurate results usually is obtained empirically. For example, for the current case with 900 particles, the direct implemen-
tation with the reference pressure value 1 gives unacceptable errors increasing with time, as shown in Fig. 2 for the lines
denoted as A. From the decay of the maximum velocity, one can find that the flow is over-dissipative which suggests that
a large numerical viscosity is introduced by the reference pressure. By numerical experimentation, more suitable values
are found 2 for the constant-density constraint and 0.02 for the zero-velocity-divergence constraint, by which the numerical
error decreases considerably, as shown in Fig. 2(b) for the line denoted as B. Note that a seemingly higher accuracy than that
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of the present method is due to the fact that in Ref. [7] the time-step size is about half of the current as result of the time-step
restriction due to the reference pressure. With approximately the same time-step sizes, comparable accuracy can also be
achieved by the present method, as shown in Fig. 2(b) for the line denoted as C. Furthermore, for even higher resolution,
there is no notable difference between the present results and those in Ref. [7] obtained with optimal reference pressure,
as shown in Fig. 1(b).

3.2. Capillary wave

We consider two problems of liquid drop oscillation under the action of capillary forces. The first problem, taken from
Refs. [9,6,7], is a liquid drop oscillating in another phase with the same density and viscosity. In the second problem, the
oscillation is tested by changing the density and viscosity ratios between the liquid drop and the surrounding fluid.
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For the first problem, the computational setup is the same as that of [6] and [7]. The computation is performed on a do-
main 0 < x < 1 and 0 < y < 1 using fluids of the same density qd ¼ qc ¼ 1 and equal viscosity gd ¼ gc ¼ 0:05. A droplet of
radius R ¼ 0:1875 is placed at the domain center and the surface-tension coefficient is a ¼ 1. To all particles a diver-
gence-free initial velocity vx ¼ V0

x
r0
ð1� y2

r0rÞ expð� r
r0
Þ and vy ¼ V0

y
r0
ð1� x2

r0rÞ expð� r
r0
Þ is assigned, where V0 ¼ 10; r0 ¼ 0:05,

and r is the distance from the position ðx; yÞ to the droplet center. In order to study the convergence properties the calcula-
tion is carried out with 900, 3600, 14400 particles, respectively.

Fig. 3 shows the positions of the droplet particles at 4 selected time instants with 14400 particles. It is observed that par-
ticle distribution is in quite good agreement with the results of Refs. [6] and [7] (their Fig. 4s). Fig. 4 gives the variation of the
center-of-mass position and kinetic energy of the upper right 1/4 part of the droplet with different resolutions. Super-linear
convergence rates are obtained for both mass center position and kinetic energy by calculating the relative error between
different resolutions. Note that, compared to the results in Ref. [7] (their Fig. 5), again the present low resolution results
is less accurate because of a larger time-step. With increasing resolution these differences become less significant. The pres-
ent computed first period at the highest resolution is about 0.344 which is very close to the result of 0.35 in [7].

For the second problem, the initial configuration is the same as that of the first problem. The calculations are carried out
with 3600 particles.

The density and viscosity of the liquid drop are set to qd ¼ 1 and gd ¼ 10�1, respectively. Several cases with different den-
sity ratios, c ¼ qd=qc , up to 1000, and viscosity ratios, k ¼ gd=gc , up to 100, between the liquid drop and the surrounding
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phase are calculated. Note that, for this problem the method in [7] similarly as other projection SPH faces serious difficulty
on constant-density constraint. When the density ratio is high, i.e. c ¼ 100 and c ¼ 1000, the iteration fails to converge to the
permitted maximum density error, that is, 1%. Further studies suggested that this problem is caused by the large reference
pressure due to the high density ratio. A large reference pressure can produce large density perturbations, comparable to the
permitted maximum density error, and prevents convergence.

Fig. 5 gives the variation of the center-of-mass position and velocity of the upper right 1/4 part of the droplet. One can find
that when c ¼ 1 and k ¼ 1, as the viscosity is larger than that of the first problem, the oscillation decays faster and the first
period increases slightly. When the ambient phase becomes more viscous, k ¼ 0:1, the capillary wave is damped very fast
and there is essentially no oscillation. If one keeps the viscosity ratio k ¼ 1 and decreases the ambient phase density as
c ¼ 10, the oscillation decay is comparable with the case with k ¼ 1 and c ¼ 1, but the first period is shortened considerably.
When both the density ratio and viscosity ratio increase, the oscillation decay becomes slower and the first period becomes
shorter. When the density ratio is c ¼ 1000 and the viscosity ratio k ¼ 100, which corresponds approximately to a water–air
pairing, the oscillation decay and oscillation period approach a limit which depends on the density and viscosity of the liquid

drop only. The measured first period is about 0.205 which recovers the theoretical period s ¼ 2p
ffiffiffiffiffiffiffi
R3ql
6a

q
� 0:208 of a free-drop

oscillation quite well.

3.3. Rayleigh–Taylor instability

We consider two Rayleigh–Taylor instability problems. The first problem which has been studied in Refs. [2] and [7] is the
instability of two continuous phases under the action of gravity. The second problem is the instability of a continuous phase
and a bubbly phase.

For the first problem, the computation is performed on a domain 0 < x < 1 and 0 < y < 2. Initially, the particles are placed
on regular lattice positions. In the lower part of the domain are particles with density ql ¼ 1:0. In the upper domain, defined
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by y > 1� 0:15 sinð2pxÞ, are particles with density qu ¼ 1:8. The Reynolds number is set to Re ¼ 420 and the Froude number
is set to Fr ¼ 1. No surface-tension is included. The initial particle velocity is set to zero. The calculation is carried out with
7200 particles. The computational setup is the same as that of Ref. [7].

The calculated particle positions at times t ¼ 1; t ¼ 3 and t ¼ 5 are shown in Fig. 6. The general features show a good
agreement with the results in Ref. [7] (see their Fig. 10), which produces more interfacial vorticity than [2] because of the
sharp-interface representation. However, the present results show even stronger deposition of vorticity at late times, when
the secondary plumes, which usually can only be found in high resolution computations, emerge from the initial plumes.
This indicates that the present method introduces significantly less numerical viscosity than previous incompressible SPH
[2,7]. The results obtained in Ref. [7] suggests that the reference pressure is over-estimated. However, since sufficiently large
reference pressure is always needed for numerical stability, smaller reference pressure may reduce numerical viscosity but
can cause a stability problem. This stability problem leads the particles of the top layer moving gradually down from the wall
and producing a void region (not shown here).

For the second problem, the computational setup is similar, but the average density ql ¼ 1:0 of the lower part of the do-
main is achieved approximately by randomly distributing the same particles as in the upper part of the domain and other
particles with 1/100 density and 1/10 viscosity, respectively. Therefore, the lower part of the domain is a bubbly region.
The calculation is carried out with 12,800 particles, in which several hundreds bubbles are embedded in the continuous fluid,
as shown if Fig. 7(a). This problem is very challenging for conventional multi-phase methods, by which either the individual
bubbles cannot be accurately resolved because of the strongly smeared interface, as e.g. for front-capturing methods, or the
mass of the bubbles can not be preserved, as e.g. for front-tracking methods. The practical applicability of these methods is
currently limited to the study of problems involving only a small number of bubbles, typically Oð100Þ or less [5,8]. In the
present method, the bubbles are fully resolved because of the sharp-interface model and the mass of the bubbles is constant
because of the fully conservative scheme. It should be stressed that this problem is chosen to show the robustness of the
present method. However, we are not aware of a reference experiment or numerical solution available in the literature
for comparison.

The calculated positions of particles at times t ¼ 3 and t ¼ 4:5 are shown in Fig. 7(b) and (c). Although we can not find
numerical or experimental work which can be compared directly to the present simulation, it is apparent that the instability
evolution resembles that of the first problem. However, the interfaces between the continuous phase and the bubbly phase,
and the bubbly phase itself are not smooth, and the interfacial disturbances can develop a more complex behavior. Multiple
”bubbles” and ”spikes” are formed, by which a very complicated flow field develops much earlier than for the first problem
(see Fig. 7(b)). Another major difference is that the main spike moves faster. As shown in Fig. 7(c), the main spike reaches the
lower wall already at about t ¼ 4:5 (the computation stops shortly after that), whereas the main spike in the first problem
still has some distance from the lower wall even at a later time instant t ¼ 5 (see Fig. 6(c)).
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